Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols
نویسندگان
چکیده
[1] We evaluate the sensitivity of tropospheric OH, O3, and O3 precursors to photochemical effects of aerosols not usually included in global models: (1) aerosol scattering and absorption of ultraviolet radiation and (2) reactive uptake of HO2, NO2, and NO3. Our approach is to couple a global 3-D model of tropospheric chemistry (GEOSCHEM) with aerosol fields from a global 3-D aerosol model (GOCART). Reactive uptake by aerosols is computed using reaction probabilities from a recent review (gHO2 = 0.2, gNO2 = 10 , gNO3 = 10 ). Aerosols decrease the O3 ! O(D) photolysis frequency by 5–20% at the surface throughout the Northern Hemisphere (largely due to mineral dust) and by a factor of 2 in biomass burning regions (largely due to black carbon). Aerosol uptake of HO2 accounts for 10–40% of total HOx radical ( OH + peroxy) loss in the boundary layer over polluted continental regions (largely due to sulfate and organic carbon) and for more than 70% over tropical biomass burning regions (largely due to organic carbon). Uptake of NO2 and NO3 accounts for 10–20% of total HNO3 production over biomass burning regions and less elsewhere. Annual mean OH concentrations decrease by 9% globally and by 5–35% in the boundary layer over the Northern Hemisphere. Simulated CO increases by 5–15 ppbv in the remote Northern Hemisphere, improving agreement with observations. Simulated boundary layer O3 decreases by 15– 45 ppbv over India during the biomass burning season in March and by 5–9 ppbv over northern Europe in August, again improving comparison with observations. We find that particulate matter controls would increase surface O3 over Europe and other industrial regions.
منابع مشابه
A study of sulfur dioxide oxidation pathways over a range of liquid water contents, pH values, and temperatures
We examine factors controlling the photochemical oxidation of SO2 in tropospheric aerosols using a gas-aqueous photochemical model. Over a range of liquid water contents (3x10 -4g H20 m -3 to 9 g H20 m -3) and pH values (0 to 8), we find that H202(aq) and O3(aq) provide the major sinks for SO2 in the aqueous phase when pH is held constant at below 5 and larger than 6, respectively. OH(aq) may b...
متن کاملAssessing known pathways for HO2 loss in aqueous atmospheric aerosols: Regional and global impacts on tropospheric oxidants
[1] We present a study of the potential importance of known reaction pathways for HO2 loss in atmospheric aerosols. As a baseline case, we calculate the reaction probability for HO2 loss by its self-reaction in aqueous particles. Detailed calculations assessed the effects of aerosol pH, temperature, particle size, and aqueous phase diffusion limitations on the rate of HO2 loss by this process. ...
متن کاملAccuracy Improvement of Tropospheric Delay Interpolation in RTK Networks
The effect of troposphere on the signals emitted from global navigation satellite system (GNSS) satellites, appears as an extra delay in the measurement of the signal traveling from the satellite to receiver. This delay depends on the temperature, pressure, humidity as well as the transmitter and receiver antennas location. In GNSS positioning, tropospheric delay effects on accuracy of differen...
متن کاملSensitivity of tropospheric oxidants to biomass burning emissions: implications for radiative forcing
[1] Biomass burning is one of the largest sources of trace gases and aerosols to the atmosphere and has profound influence on tropospheric oxidants and radiative forcing. Using a fully coupled chemistry-climate model (GFDL AM3), we find that co-emission of trace gases and aerosol from present-day biomass burning increases the global tropospheric ozone burden by 5.1% and decreases global mean OH...
متن کاملTropospheric Aerosol Impacts on Trace-Gas Budgets through Photolysis
Aerosols affect the global budgets of O3, OH and CH4 in part through their alteration of photolysis rates and in part through their direct chemistry interactions with gases (a.k.a. “heterogeneous chemistry”). The first effect is evaluated here with a global tropospheric chemistry transport model using recently developed global climatologies of tropospheric aerosols: a satellite-derived aerosol ...
متن کامل